Using Satellite Based Volcanic Ash Products to Improve HYSPLIT Transport and Dispersion Model Predictions ¢i

Alice Crawford®2, Barbara Stunder 1, Jaime Kibler3, Michael J. Pavolonis*
1 NOAA/ARL, College Park, MD, 2 UMD/CICS, College Park, MD, 3NESDIS/OSPO/SPSD/SAB-Washington VAAC, College Park, MD

_ INTRODUCTION 4“NOAA Center for Satellite Applications and Research, Madison, WI METHOD

SOURCE TERMS i
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and dispersion model can have large uncertainties. Recently, satellite based volcanic ash retrieval algorithms have been developed Meteorological data from a produced at 5 ’l\mes which Flgure 2 Passive IR satellite retrlevalsz of &
which can identify the spectral signature of ash and then calculate the mass loading, cloud height and effective radius as a function "L?:Z';?ff;’:"::;;) correspond to the times at column mass loading of ash at five time periods. .
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Here we look at the 2008 eruption of Kasatochi in the Aleutian Islands. We use satellite retrievals provided by NOAA/CIMSS for this | | Future postion and mass T1-200808/08 13:40 UTC F:;fi‘:;‘:;\';‘"gﬁ” aatstﬁ/as mass released from each grid point was ,‘ TS - 2008 08/10 11:50 UTC
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the satellite retrievals both to help construct some of the source terms and for verification. For further verification, data from the Compare - UTC and up to 18 km for 8 h top height. Retrievals at T1-T3 were used to create source terms for input into
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SUMMARY 105°W__150°W dimensional structure with patches and layers. The RT1 source may have an
advantage over the RT2 and RT3 sources in that the early cloud has a simpler
Using a source term located at the observed position of the ash cloud produces better or comparable results to using a source term located at the vent.  structure and is better represented by a single layer.
The mass loading retrieval can reduce uncertainty in the forecast modeled ash cloud by providing better information on which portions of the modeled Soma of this research was In responsato requiramants and funding by the Federal Aviation Administration(FAA). The views expressed
cloud would be too diffuse to be detected. A cylindrical source may represent the early plume better than a line source for large eruptions. a2 tss chthe suthorzand oot pect=zarly apressnche ol pokcycrpositicr e A
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